Factorising – Junior Cert Ordinary Level

<table>
<thead>
<tr>
<th>Type of Factorising</th>
<th>How Many Terms: (usually)</th>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.C.F. (Highest Common Factor)</td>
<td>2 Terms</td>
<td>$4ab + 12a$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= 4a(b + 3)$</td>
</tr>
<tr>
<td>Grouping</td>
<td>4 Terms</td>
<td>$2bc + 4b + 3ac + 6a$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= 2b(c + 2) + 3a(c + 2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= (2b + 3a)(c + 2)$</td>
</tr>
<tr>
<td>Quadratic</td>
<td>3 Terms</td>
<td>$x^2 - 7x + 10$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= (x - 5)(x - 2)$</td>
</tr>
<tr>
<td>D.O.T.S. (Difference of Two Squares)</td>
<td>2 Terms</td>
<td>$x^2 - 25$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= x^2 - 5^2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= (x - 5)(x + 5)$</td>
</tr>
</tbody>
</table>

Highest Common Factor

Step 1: Find the HCF

(this is the biggest number and letter which is common to both terms)

| $3x^2 + 6x$ |
| (HCF = $3x$) |

Step 2: Put the HCF outside the brackets

| $3x^2 + 6x$ |
| $= 3x(\quad)$ |

Step 3: Divide each term by the HCF to find the factor inside the brackets

(What do I need to multiply by the HCF to get the first term? What do I need to multiply by the HCF to get the second term?)

| $3x^2 + 6x$ |
| $= 3x(x + 2)$ |

Grouping

Step 1: Separate the 4 terms into 2 pairs which have a common factor

(this is usually done for you)

| $3ac + 6c + ad + 2d$ |

Step 2: Do HCF for each pair (see above)

(take out the common factor of each 2 terms)

| $3ac + 6c + ad + 2d$ |
| $= 3c(a + 2) + d(a + 2)$ |

These brackets should be the same!

Step 3: Don’t forget to put this into “Double Brackets”

(This is actually like a giant HCF)

(Put the two HCFs from the previous step into one bracket, and the second bracket is the one which was the same from the last step)

| $3c(a + 2) + d(a + 2)$ |
| $(3c + d)(a + 2)$ |
Quadratics – Trial and Error method

Step 1: Write down the question, and two empty brackets underneath

\[x^2 + 5x - 24 \]

\[(\quad)(\quad)\]

Step 2: Fill in the \(x \) and \(x \) as the first terms in the brackets
because these will multiply together to give us the \(x^2 \) term

\[x^2 + 5x - 24 \]

\[(x \quad)(x \quad)\]

Step 3: We now need to think of two numbers that will multiply to make the last term.
Hint: if this is a + then both signs in the brackets will be the same. If it's a – sign then the signs will be different.

Let's try –6 and 4

\[(x - 6)(x + 4) \]

Step 4: Multiply out the brackets (F.O.I.L.) Do the Outer and Inner terms add together to make the middle term of the original expression?

\[x^2 + 5x - 24 \]

\[(x - 6)(x + 4) \]

\[x^2 + 4x - 6x - 24 \]

Is \(4x - 6x = 5x \)?

NO! So - try again.

\[x^2 + 5x - 24 \]

\[(x + 8)(x - 3) \]

Step 5: Repeat steps 3 and 4 until you find 2 numbers that work!

DOTS (Difference of 2 Squares)

Step 1: Re-write the question as \((Something)^2 - (Something else)^2\)

\[x^2 - 36 \]

\[= (x)^2 - (6)^2 \]

Step 2: Use the rule \(a^2 - b^2 = (a + b)(a - b) \)

In words, this is \((First + Second)(First - Second)\)

\[x^2 - 36 \]

\[= (x + 6)(x - 6) \]
Factorising Quadratics

Method: Trial and Error

Factorise: Put it into brackets.

Step 1: Write down the quadratic expression.

Step 2: Draw the brackets and order them.

Step 3: Write down the 2 terms (usually just x and x^2) that multiply to make the x^2 term of the quadratic.

Step 4: Think of 2 numbers that multiply to make the last term of the quadratic.

Step 5: Work out the signs (for the last term). Remember:

- **Signs Same:** + x + or - x -
- **Signs Different:** + x - or - x +

Step 6: Multiply out the brackets to check.

If you have the right answer, if you don’t, go back to step 2.

Step 7: If you have the right answer, remember...

The brackets are the answer... not the checking...

Example:

eq. \(x^2 - 3x - 10 \)

1. 5 and 2, because 5 \(\times \) 2 = 10.
2. \((x - 5)(x + 2)\)
3. In this case, \(x \times x = x^2 \)
4. In this case, try 5 and 2.

ANS: \((x - 5)(x + 2)\)
Quadratic Equations (Equations with an \(x^2\))

Steps:
1. Make sure equation has an \(a = 0\).
2. Factorise.
3. Write down answers / solve.

Example:

\[x^2 + 8x + 12 = 0\]

\[(x + 6)(x + 2) = 0\]

\[x = -6 \quad \text{or} \quad x = -2\]

This can be learnt as a rule:

Example:

\[x^2 - 9x + 14 = 0\]

\[(x - 7)(x - 2) = 0\]

(x-7) is a number

(x-2) is a number.

When I multiply two numbers together to make zero,

Either the first number or the second number has to be \(0\).

So, in this example,

Either \((x - 7)(x - 2) = 0\)

\[x = 7\]

\[x = 2\]