Complex Numbers

Example: $3 + 4i$
Except: $a + bi$

Real
Imaginary

Just Like Algebra — Except
$c^2 = -1$

OR

$c = i\sqrt{-1}$

Introduction

- **We Need Complex Numbers to Deal with Square Roots of Negative Numbers.**

- **Try Entering** $\sqrt{-4}$ **Into Your Calculator** → You Will Get an Error.

- **We Have** $i = \sqrt{-1}$. **So**

$$\sqrt{-4} = \sqrt{4} \times \sqrt{-1} = 2i$$

In Practice, a lot of what we do with complex numbers is just normal algebra except:

Everywhere you come across i^2
Replace it with -1

So $3i^2 = -3$
$-5i^2 = +5$

Hint:

If you see i^2, change the sign and drop the i^2.
ARGAND DIAGRAM

It often helps us to draw a picture.

This is where we plot complex numbers as coordinates (like x and y axes).

MODULUS (This is the distance from the "origin" to the "point" represented on the Argand diagram)

Be very familiar with the notation/how the modulus is written...

1. Plot the point on the Argand diagram. (This can be a very quick sketch)
2. Draw a right-angled triangle & label side lengths
3. Use Pythagoras

eg \[z = 3 + 4i \]
Calculate \[|z| \]

\[|z|^2 = 3^2 + 4^2 \]
\[|z|^2 = 9 + 16 \]
\[|z|^2 = 25 \]
\[|z| = \sqrt{25} = 5 \]
We often use the letters \(z \) or \(w \) to represent complex numbers.

Example:

\[z = 3 + 2i \]

What is \(z^2 \)?

Answer:

\[
\begin{align*}
(3+2i)^2 &= (3+2i)(3+2i) \\
&= 9 + 6i + 6i + 4i^2 \\
&= 9 + 12i - 4 \\
&= 5 + 12i
\end{align*}
\]

Conjugate

Example:

If \(z = 3 + 5i \)

\[\overline{z} \]

You have to know the notation.

\[\overline{z} = 3 - 5i \]

Change the sign of the imaginary part only

Example:

1. \(z = 3 + 4i \)
 \[\overline{z} = 3 - 4i \]
2. \(w = 2 - 5i \)
 \[\overline{w} = 2 + 5i \]

This will become very useful for dividing complex numbers.
INVESTIGATION: WHAT HAPPENS WHEN YOU MULTIPLY BY i?

\[i = 1 \]
\[i^2 = i \times i = i^2 = -1 \]
\[i^3 = i \times i \times i = (i \times i) \times i = -i \times i = -i \]
\[i^4 = i^3 \times i = (-i) \times i = -i^2 = 1 \]
\[i^5 = i^4 \times i = 1 \times i = i \]

\[\begin{array}{c|c|c|c|c|c}
 i^0 & i^1 & i^2 & i^3 & i^4 & i^5 \\
 \hline
 1 & i & -1 & -i & 1 & i \\
 \hline
 1 & 0 & 0 & 0 & 0 & 0
\end{array} \]

REPEATS EVERY FOUR

So, multiplying by i is a rotation by 90°.

YOU SHOULD KNOW/REMEMBER THIS...
Adding/Subtracting Complex Numbers

Just like in algebra, when we can only add "like terms", with complex numbers we can add/subtract "reals" and "imaginaries" separately:

\[
\begin{align*}
3 + 4i + 2 - 3i &= \boxed{5 + i} \\
\end{align*}
\]

Multiplying Complex Numbers

Behaves exactly like algebra, except \(i^2 = -1\)

- \(3(4 - 5i) = 12 - 15i\)
- \(2(3 + 2i) - 4(2 + i) = 6 + 4i - 8 - 4i = -2\)
- \(3i(1 + 2i) = 3i + 6i^2 = 3i - 6\) (Remember, \(i^2 = -1\))
- \((-3 + 2i)(4 - 5i)\)
 \[
 \begin{align*}
 &= (-3 + 2i)(4 - 5i) \\
 &= -12 + 15i + 8i - 10i^2 \\
 &= -12 + 23i + 10 \\
 &= -2 + 23i
 \end{align*}
 \]
Dividing Complex Numbers

1. Easy!
 - If it's just a real number on the bottom, divide each top term by the number on the bottom.

 \[\frac{3 + 2i}{4 - 5i} \]
 - Example:
 - \[\frac{10 + 15i}{5} = 2 + 3i \]
 - \[\frac{23 - 17i}{4} = \frac{23}{4} - \frac{17}{4}i \]

2. Hard
 - If the bottom has an imaginary part, make it into the "easy" type.
 - How?
 - By multiplying top and bottom by the conjugate of the bottom.
 - Change the sign of the imaginary part.

Example:
- \[\frac{5 + 5i}{1 + 2i} \]
 - **Step 1**: Multiply top and bottom by \((1 - 2i)\)
 - \[\frac{(5 + 5i)(1 - 2i)}{(1 + 2i)(1 - 2i)} \]
 - **Step 2**: Lay it out like this
 - **Top**: \(5(1 - 2i) + 5i(1 - 2i) \Rightarrow 5 - 10i + 5i - 10i^2 \Rightarrow 5 - 5i + 10 \)
 - **Bottom**: \((1 + 2i)(1 - 2i) \Rightarrow 1 - 2i + 2i - 4i^2 \Rightarrow 1 + 4\)
 - **Steps 3 + 4**: Put \(\frac{\text{Top}}{\text{Bottom}}\) and divide
 - \[\frac{15 - 5i}{5} = 3 - i \]
Using Complex Numbers for Quadratic Equations

Example:

\[z^2 - 6z + 34 = 0 \]

\[a = 1 \]
\[b = -6 \]
\[c = 34 \]

This can't be solved using real numbers alone.

\[\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[\sqrt{(-6)^2 - 4(1)(34)} \]

\[\sqrt{36 - 136} \]
\[\sqrt{-100} \]
\[\sqrt{100} \times \sqrt{-1} \]
\[10i \]

\[\frac{6 \pm 10i}{2} \]

\[\frac{3 + 5i}{2} \text{ or } \frac{3 - 5i}{2} \]

This will always happen. If the 2 answers are complex numbers, one will be the "conjugate" of the other.

You will need to practice lots of these.

\(1\) \[z^2 - 10z + 29 = 0 \]
\(2\) \[z^2 + 2z + 10 = 0 \]
\(3\) \[z^2 - 12z + 37 = 0 \]
\(4\) \[z^2 - 2z + 17 = 0 \]